DocumentCode :
3711427
Title :
Transfer-printing for the next generation of multi-junction solar cells
Author :
Matthew P. Lumb;Matthew Meitl;Brent Fisher;Scott Burroughs;Kenneth J. Schmieder;Maria Gonzalez;Michael K. Yakes;Shawn Mack;Raymond Hoheisel;Mitchell F. Bennett;Chris W. Ebert;David V. Forbes;Christopher G. Bailey;Robert J. Walters
Author_Institution :
The George Washington University, 20007, USA
fYear :
2015
fDate :
6/1/2015 12:00:00 AM
Firstpage :
1
Lastpage :
6
Abstract :
Transfer-printing is a key enabling technology for the realization of ultra-high-efficiency, mechanically stacked III-V solar cells with low cost. In this paper, we present the latest results for microscale CPV cells grown on GaAs and InP substrates for ultra-high-efficiency, four-terminal, mechanically stacked architectures. We describe the latest findings from a combination of modeling, growth, characterization and processing of tunnel junctions, single junction and multijunction solar cells, with the ultimate goal of using transfer-printing to produce the first solar cell with 50% conversion efficiency.
Keywords :
"Indium phosphide","III-V semiconductor materials","Printing","Indium gallium arsenide","Gallium arsenide","Indexes","Epitaxial growth"
Publisher :
ieee
Conference_Titel :
Photovoltaic Specialist Conference (PVSC), 2015 IEEE 42nd
Type :
conf
DOI :
10.1109/PVSC.2015.7356146
Filename :
7356146
Link To Document :
بازگشت