Title :
Sleep stage classification using sparse rational decomposition of single channel EEG records
Author :
Kaveh Samiee;Péter Kovács;Serkan Kiranyaz;Moncef Gabbouj;Tapio Saramaki
Author_Institution :
Tampere University of Technology, Tampere, Finland
Abstract :
A sparse representation of ID signals is proposed based on time-frequency analysis using Generalized Rational Discrete Short Time Fourier Transform (RDSTFT). First, the signal is decomposed into a set of frequency sub-bands using poles and coefficients of the RDSTFT spectra. Then, the sparsity is obtained by applying the Basis Pursuit (BP) algorithm on these frequency sub-bands. Finally, the total energy of each subband was used to extract features for offline patient-specific sleep stage classification of single channel EEG records. In classification of over 670 hours sleep Electroencephalography of 39 subjects, the overall accuracy of 92.50% on the test set is achieved using random forests (RF) classifier trained on 25% of each sleep record. A comparison with the results of other state-of-art methods demonstrates the effectiveness of the proposed sparse decomposition method in EEG signal analysis.
Keywords :
"Sleep","Electroencephalography","Feature extraction","Radio frequency","Signal processing algorithms","Europe","Signal processing"
Conference_Titel :
Signal Processing Conference (EUSIPCO), 2015 23rd European
Electronic_ISBN :
2076-1465
DOI :
10.1109/EUSIPCO.2015.7362706