Abstract :
Self-awareness has a long history in biology, psychology, medicine, and more recently in engineering and computing, where self-aware features are used to enable adaptivity to improve a system´s functional value, performance and robustness. With complex many-core Systems-on-Chip (SoCs) facing the conflicting requirements of performance, resiliency, energy, heat, cost, security, etc. - in the face of highly dynamic operational behaviors coupled with process, environment, and workload variabilities - there is an emerging need for self-awareness in these complex SoCs. Unlike traditional MultiProcessor Systems-on-Chip (MPSoCs), self-aware SoCs must deploy an intelligent co-design of the control, communication, and computing infrastructure that interacts with the physical environment in real-time in order to modify the system´s behavior so as to adaptively achieve desired objectives and Quality-of-Service (QoS). Self-aware SoCs require a combination of ubiquitous sensing and actuation, health-monitoring, and statistical model-building to enable the SoC´s adaptation over time and space. After defining the notion of self-awareness in computing, this paper presents the Cyber-Physical System-on-Chip (CPSoC) concept as an exemplar of a self-aware SoC that intrinsically couples on-chip and cross-layer sensing and actuation using a sensor-actuator rich fabric to enable self-awareness.
Keywords :
"Sensors","System-on-chip","Computer architecture","Predictive models","Computational modeling","Context","Software"