DocumentCode :
3728055
Title :
Accelerating Support Vector Machine Learning with GPU-Based MapReduce
Author :
Tianyao Sun;Hanli Wang;Yun Shen;Jun Wu
Author_Institution :
Dept. of Comput. Sci. &
fYear :
2015
Firstpage :
876
Lastpage :
881
Abstract :
With the exploding growth of data, the computational complexity required by learning Support Vector Machine (SVM) lays a heavy burden on real-world applications. To address this issue, parallel computational techniques can be employed such as the Graphics Processing Units (GPUs) and MapReduce model. As it is well known, GPUs are microprocessors on a multi-core architecture which reveal high performance in mass data parallel computing, and MapReduce allows computational tasks to be divided into a plurality of parts, distributed to various computing nodes and combined on a single node. In this paper, we propose a GPU-based MapReduce framework to accelerate SVM learning by jointly utilizing the parallel computing power of GPU and MapReduce. Extensive experimental results have verified the effectiveness and efficiency of the proposed approach.
Keywords :
"Graphics processing units","Support vector machines","Kernel","Training","Optimization","Acceleration","Parallel processing"
Publisher :
ieee
Conference_Titel :
Systems, Man, and Cybernetics (SMC), 2015 IEEE International Conference on
Type :
conf
DOI :
10.1109/SMC.2015.161
Filename :
7379293
Link To Document :
بازگشت