Title :
Driver Drowsiness Detection Based on Novel Eye Openness Recognition Method and Unsupervised Feature Learning
Author :
Wei Han;Yan Yang;Guang-Bin Huang;Olga Sourina;Felix Klanner;Cornelia Denk
Author_Institution :
Nanyang Technol. Univ., Singapore, Singapore
Abstract :
In this paper, we proposed a driver drowsiness detection method for which only eyelid movement information was required. The proposed method consists of two major parts. 1) In order to obtain accurate eye openness estimation, a vision based eye openness recognition method was proposed to obtain an regression model that directly gave degree of eye openness from a low-resolution eye image without complex geometry modeling, which is efficient and robust to degraded image quality. 2) A novel feature extraction method based on unsupervised learning was also proposed to reveal hidden pattern from eyelid movements as well as reduce the feature dimension. The proposed method was evaluated and shown good performance.
Keywords :
"Vehicles","Eyelids","Feature extraction","Lighting","Manifolds","Yttrium","Iris recognition"
Conference_Titel :
Systems, Man, and Cybernetics (SMC), 2015 IEEE International Conference on
DOI :
10.1109/SMC.2015.260