Title :
Fuzzy logic approach to predict vehicle crash severity from acceleration data
Author :
Bernard B. Munyazikwiye;Hamid R. Karimi;Kjell G. Robbersmyr
Author_Institution :
Department of Engineering, Faculty of Engineering and Science of the University of Agder, Grimstad, Norway
Abstract :
Vehicle crash is a complex behavior to be investigated as a challenging topic in terms of dynamical modeling. On this aim, fuzzy logic can be utilized to analyze the crash dynamics rapidly and simply. In this paper, the experimental data of the frontal crash is recorded using an accelerometer located at the centre of the gravity of the vehicle. The acceleration signal was the raw data from which the collision intensity expressed by the kinetic energy and the jerk were derived. The fuzzy logic model was then developed from the two inputs namely kinetic energy and jerk. The output variable is the crash severity expressed as the dynamic crash. The result shows that the jerk contributes much to the crash than the kinetic energy of the vehicle.
Keywords :
"Vehicle crash testing","Fuzzy logic","Vehicles","Kinetic energy","Pragmatics","Computer crashes","Mathematical model"
Conference_Titel :
Fuzzy Theory and Its Applications (iFUZZY), 2015 International Conference on
Electronic_ISBN :
2377-5831
DOI :
10.1109/iFUZZY.2015.7391892