Title :
Degenerate Viterbi Decoding
Author :
Pelchat, E. ; Poulin, D.
Author_Institution :
Dept. de Phys., Univ. de Sherbrooke, Sherbrooke, QC, Canada
Abstract :
We present a decoding algorithm for quantum convolutional codes that finds the class of degenerate errors with the largest probability conditioned on a given error syndrome. The algorithm runs in time linear with the number of qubits. Previous decoding algorithms for quantum convolutional codes optimized the probability over individual errors instead of classes of degenerate errors. Using Monte Carlo simulations, we show that this modification to the decoding algorithm results in a significantly lower block error rate.
Keywords :
Monte Carlo methods; Viterbi decoding; convolutional codes; error statistics; Monte Carlo simulations; decoding algorithms; degenerate Viterbi decoding; degenerate errors; error syndrome; largest probability; quantum convolutional codes; qubits; Convolutional codes; Decoding; Encoding; Generators; Noise; Quantum mechanics; Viterbi algorithm; Convolutional codes; Viterbi algorithm; quantum error correction;
Journal_Title :
Information Theory, IEEE Transactions on
DOI :
10.1109/TIT.2013.2246815