DocumentCode :
3747132
Title :
A multimodal approach to reduce false arrhythmia alarms in the intensive care unit
Author :
Sibylle Fallet;Sasan Yazdani;Jean-Marc Vesin
Author_Institution :
Applied Signal Processing Group, Swiss Federal Institute of Technology, Lausanne, Switzerland
fYear :
2015
Firstpage :
277
Lastpage :
280
Abstract :
As part of the 2015 PhysioNet/CinC Challenge, this work aims at lowering the number of false alarms, which are a persistent concern in the intensive care unit. The multimodal database consists of 1250 life-threatening alarm recordings, each categorized as a bradycardia, tachycardia, asystole, ventricular tachycardia or ventricular flutter/fibrillation arrhythmia. Based on the quality of available signals, heart rate was either estimated from pulsatile waveforms (photoplethysmogram and/or arterial blood pressure) using an adaptive frequency tracking algorithm or computed from ECGs using an adaptive mathematical morphology approach. Furthermore, we introduced a supplementary measure based on the spectral purity of the ECGs to determine if a ventricular tachycardia or flutter/fibrillation arrhythmia has taken place. Finally, alarm veracity was determined based on a set of decision rules on heart rate and spectral purity values. Our method achieved overall scores of 76.11 and 85.04 on the real-time and retrospective subsets, respectively.
Keywords :
"Electrocardiography","Real-time systems","Feature extraction","Tracking"
Publisher :
ieee
Conference_Titel :
Computing in Cardiology Conference (CinC), 2015
ISSN :
2325-8861
Print_ISBN :
978-1-5090-0685-4
Electronic_ISBN :
2325-887X
Type :
conf
DOI :
10.1109/CIC.2015.7408640
Filename :
7408640
Link To Document :
بازگشت