DocumentCode
3748489
Title
Deep Colorization
Author
Zezhou Cheng;Qingxiong Yang;Bin Sheng
fYear
2015
Firstpage
415
Lastpage
423
Abstract
This paper investigates into the colorization problem which converts a grayscale image to a colorful version. This is a very difficult problem and normally requires manual adjustment to achieve artifact-free quality. For instance, it normally requires human-labelled color scribbles on the grayscale target image or a careful selection of colorful reference images (e.g., capturing the same scene in the grayscale target image). Unlike the previous methods, this paper aims at a high-quality fully-automatic colorization method. With the assumption of a perfect patch matching technique, the use of an extremely large-scale reference database (that contains sufficient color images) is the most reliable solution to the colorization problem. However, patch matching noise will increase with respect to the size of the reference database in practice. Inspired by the recent success in deep learning techniques which provide amazing modeling of large-scale data, this paper re-formulates the colorization problem so that deep learning techniques can be directly employed. To ensure artifact-free quality, a joint bilateral filtering based post-processing step is proposed. Numerous experiments demonstrate that our method outperforms the state-of-art algorithms both in terms of quality and speed.
Keywords
"Gray-scale","Image color analysis","Feature extraction","Neural networks","Neurons","Machine learning","Databases"
Publisher
ieee
Conference_Titel
Computer Vision (ICCV), 2015 IEEE International Conference on
Electronic_ISBN
2380-7504
Type
conf
DOI
10.1109/ICCV.2015.55
Filename
7410412
Link To Document