Title :
Object Detection via a Multi-region and Semantic Segmentation-Aware CNN Model
Author :
Spyros Gidaris;Nikos Komodakis
Author_Institution :
Ecole des Ponts ParisTech, Univ. Paris Est, Paris, France
Abstract :
We propose an object detection system that relies on a multi-region deep convolutional neural network (CNN) that also encodes semantic segmentation-aware features. The resulting CNN-based representation aims at capturing a diverse set of discriminative appearance factors and exhibits localization sensitivity that is essential for accurate object localization. We exploit the above properties of our recognition module by integrating it on an iterative localization mechanism that alternates between scoring a box proposal and refining its location with a deep CNN regression model. Thanks to the efficient use of our modules, we detect objects with very high localization accuracy. On the detection challenges of PASCAL VOC2007 and PASCAL VOC2012 we achieve mAP of 78.2% and 73.9% correspondingly, surpassing any other published work by a significant margin.
Keywords :
"Object detection","Biological system modeling","Semantics","Feature extraction","Computer architecture","Context","Shape"
Conference_Titel :
Computer Vision (ICCV), 2015 IEEE International Conference on
Electronic_ISBN :
2380-7504
DOI :
10.1109/ICCV.2015.135