Title :
Relaxed Multiple-Instance SVM with Application to Object Discovery
Author :
Xinggang Wang;Zhuotun Zhu;Cong Yao;Xiang Bai
Abstract :
Multiple-instance learning (MIL) has served as an important tool for a wide range of vision applications, for instance, image classification, object detection, and visual tracking. In this paper, we propose a novel method to solve the classical MIL problem, named relaxed multiple-instance SVM (RMI-SVM). We treat the positiveness of instance as a continuous variable, use Noisy-OR model to enforce the MIL constraints, and optimize them jointly in a unified framework. The optimization problem can be efficiently solved using stochastic gradient decent. The extensive experiments demonstrate that RMI-SVM consistently achieves superior performance on various benchmarks for MIL. Moreover, we simply applied RMI-SVM to a challenging vision task, common object discovery. The state-of-the arts results of object discovery on PASCAL VOC datasets further confirm the advantages of the proposed method.
Keywords :
"Support vector machines","Visualization","Noise measurement","Proposals","Image edge detection","Optimization","Object detection"
Conference_Titel :
Computer Vision (ICCV), 2015 IEEE International Conference on
Electronic_ISBN :
2380-7504
DOI :
10.1109/ICCV.2015.145