DocumentCode :
3748713
Title :
Dense Optical Flow Prediction from a Static Image
Author :
Jacob Walker;Abhinav Gupta;Martial Hebert
fYear :
2015
Firstpage :
2443
Lastpage :
2451
Abstract :
Given a scene, what is going to move, and in what direction will it move? Such a question could be considered a non-semantic form of action prediction. In this work, we present a convolutional neural network (CNN) based approach for motion prediction. Given a static image, this CNN predicts the future motion of each and every pixel in the image in terms of optical flow. Our CNN model leverages the data in tens of thousands of realistic videos to train our model. Our method relies on absolutely no human labeling and is able to predict motion based on the context of the scene. Because our CNN model makes no assumptions about the underlying scene, it can predict future optical flow on a diverse set of scenarios. We outperform all previous approaches by large margins.
Keywords :
"Optical imaging","Videos","Predictive models","Optical losses","Neural networks","Context","Trajectory"
Publisher :
ieee
Conference_Titel :
Computer Vision (ICCV), 2015 IEEE International Conference on
Electronic_ISBN :
2380-7504
Type :
conf
DOI :
10.1109/ICCV.2015.281
Filename :
7410638
Link To Document :
بازگشت