Title :
Partial Person Re-Identification
Author :
Wei-Shi Zheng;Xiang Li;Tao Xiang;Shengcai Liao;Jianhuang Lai;Shaogang Gong
Author_Institution :
Sch. of Inf. Sci. &
Abstract :
We address a new partial person re-identification (re-id) problem, where only a partial observation of a person is available for matching across different non-overlapping camera views. This differs significantly from the conventional person re-id setting where it is assumed that the full body of a person is detected and aligned. To solve this more challenging and realistic re-id problem without the implicit assumption of manual body-parts alignment, we propose a matching framework consisting of 1) a local patch-level matching model based on a novel sparse representation classification formulation with explicit patch ambiguity modelling, and 2) a global part-based matching model providing complementary spatial layout information. Our framework is evaluated on a new partial person re-id dataset as well as two existing datasets modified to include partial person images. The results show that the proposed method outperforms significantly existing re-id methods as well as other partial visual matching methods.
Keywords :
"Computational modeling","Probes","Face recognition","Dictionaries","Cameras","Clothing","Robustness"
Conference_Titel :
Computer Vision (ICCV), 2015 IEEE International Conference on
Electronic_ISBN :
2380-7504
DOI :
10.1109/ICCV.2015.531