Title :
Adaptation of multi-domain corpus learned seeds and polarity lexicon for sentiment analysis
Author :
Swati Sanagar;Deepa Gupta
Author_Institution :
Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Bangalore, India
Abstract :
Sentiment analysis has emerged as an independent branch of research and attracted many researchers in recent years. Analysis of sentiment deals with expressed opinions. That makes it widely applicable in every part of life and in businesses where opinion counts. Opinions are expressed by the means of opinion oriented words which are part of sentiment analysis resource such as polarity lexicon. Polarity lexicon construction is widely explored by researchers using various supervised and semi-supervised approaches. Semi-supervised approaches are often combined with polarity seed information. A novel semi-supervised approach is proposed to construct polarity lexicon using iterative Latent Semantic Analysis technique from unlabeled multiple source domains corpus. This polarity lexicon is adaptable across multiple target domains. In the process seed words are learned from multiple domain corpus and subsequently adapted to new domains. Significant improvement in accuracy is observed over the baselines.
Keywords :
"Sentiment analysis","Dictionaries","Semantics","Matrix decomposition","Sparse matrices","Context","Pragmatics"
Conference_Titel :
Computing and Network Communications (CoCoNet), 2015 International Conference on
DOI :
10.1109/CoCoNet.2015.7411166