Title :
Music emotion recognition using deep Gaussian process
Author :
Sih-Huei Chen;Yuan-Shan Lee;Wen-Chi Hsieh;Jia-Ching Wang
Author_Institution :
Department of Computer Science and Information Engineering, National Central University, Taiwan, R.O.C.
Abstract :
Music is a powerful force that evokes human emotions. Several investigations of music emotion recognition (MER) have been conducted in recent years. This paper proposes a system for detecting emotion in music that is based on a deep Gaussian process (GP). The system consists of two parts-feature extraction and classification. In the feature extraction part, five types of features that are associated with emotions are selected for representing the music signal; these are rhythm, dynamics, timbre, pitch and tonality. A music clip is decomposed into frames and these features are extracted from each frame. Next, statistical values, such as mean and standard deviation, of frame-based features are calculated to generate a 38-dimensional feature vector. In the classification part, a deep GP is utilized for emotion recognition. We treat classification problem from the perspective of regression. Finally, 9 classes of emotion are categorized by 9 one-versus-all classifiers. The experimental results demonstrate that the proposed system performs well in emotion recognition.
Keywords :
"Feature extraction","Gaussian processes","Emotion recognition","Standards","Support vector machines","Rhythm"
Conference_Titel :
Signal and Information Processing Association Annual Summit and Conference (APSIPA), 2015 Asia-Pacific
DOI :
10.1109/APSIPA.2015.7415321