DocumentCode :
3754097
Title :
Face de-identification using facial identity preserving features
Author :
Hehua Chi;Yu Hen Hu
Author_Institution :
State Key Laboratory of Software Engineering, Computer School, Wuhan University, China
fYear :
2015
Firstpage :
586
Lastpage :
590
Abstract :
Automated human facial image de-identification is a much needed technology for privacy-preserving social media and intelligent surveillance applications. Other than the usual face blurring techniques, in this work, we propose to achieve facial anonymity by slightly modifying existing facial images into "averaged faces" so that the corresponding identities are difficult to uncover. This approach preserves the aesthesis of the facial images while achieving the goal of privacy protection. In particular, we explore a deep learning-based facial identity-preserving (FIP) features. Unlike conventional face descriptors, the FIP features can significantly reduce intra-identity variances, while maintaining inter-identity distinctions. By suppressing and tinkering FIP features, we achieve the goal of k-anonymity facial image de-identification while preserving desired utilities. Using a face database, we successfully demonstrate that the resulting "averaged faces" will still preserve the aesthesis of the original images while defying facial image identity recognition.
Keywords :
"Face","Face recognition","Active appearance model","Privacy","Databases","Image recognition","Machine learning"
Publisher :
ieee
Conference_Titel :
Signal and Information Processing (GlobalSIP), 2015 IEEE Global Conference on
Type :
conf
DOI :
10.1109/GlobalSIP.2015.7418263
Filename :
7418263
Link To Document :
بازگشت