Title :
Multi-time series and -time scale modeling for wind speed and wind power forecasting part I: Statistical methods, very short-term and short-term applications
Author :
Ilhami Colak;Seref Sagiroglu;Mehmet Yesilbudak;Ersan Kabalci;H. Ibrahim Bulbul
Author_Institution :
Istanbul Gelisim University, Faculty of Engineering and Architecture, Department of Mechatronic Engineering, 34315, Turkey
Abstract :
This study concentrates on multi-time series and - time scale modeling in wind speed and wind power forecasting. Different statistical models along with different time horizons are analyzed and evaluated broadly and comprehensively. For this reason, the entire study is divided into two main scientific parts. In case of making a general overview of the entire study, moving average (MA), weighted moving average (WMA), autoregressive moving average (ARMA) and autoregressive integrated moving average (ARIMA) methods are employed for multi-time series modeling. Very short-term, short-term, medium-term and long-term scales are utilized for multi-time scale modeling. Specifically, in this part of the entire study, the mentioned statistical models are presented in detail and 10-min and 1-h time series forecasting models are created for the purpose of achieving 10-min and 2-h ahead forecasting, respectively. Many useful outcomes are accomplished for very short-term and short-term wind speed and wind power forecasting.
Keywords :
"Forecasting","Predictive models","Autoregressive processes","Wind power generation","Wind speed","Computational modeling","Time series analysis"
Conference_Titel :
Renewable Energy Research and Applications (ICRERA), 2015 International Conference on
DOI :
10.1109/ICRERA.2015.7418697