Title :
Load modeling assumptions: What is accurate enough?
Author :
Abdel Rahman Khatib;Mahipathi Appannagari;Scott Manson;Spencer Goodall
Author_Institution :
Schweitzer Engineering Laboratories, Inc., 2350 NE Hopkins Court, Pullman, WA 99163, USA
Abstract :
This paper presents an elegant method for determining the simplest model of a power system electrical/mechanical load that will suffice for dynamic frequency power system studies and closed-loop simulation work. The strategy behind this technique is to supply the simplest load model possible that gives sufficiently accurate results for the goals of each unique modeling effort. The paper identifies the frequency characteristics of several different load types. It also identifies the level of load model detail required for testing typical power management systems, contingency-based load-shedding systems, frequency-based load-shedding systems, governor control systems, island/grid/unit autosynchronization systems, and exciter control systems. The paper describes how to lump loads without loss of fidelity, when an induction motor needs to be modeled as a single-cage or double-cage motor model, what sort of mechanical load model is appropriate, when we can assume zero inertia for a direct-on-line type of load, and how to verify the turbine/generator inertia and load inertia from field tests. This paper concludes with a simple reference that engineers can use to specify the level of detail required when modeling industrial power system loads.
Keywords :
"Power system stability","Generators","Load modeling","Stability analysis","Rotors","Frequency response","Control systems"
Conference_Titel :
Petroleum and Chemical Industry Committee Conference (PCIC), 2015 IEEE
Print_ISBN :
978-1-4799-8501-2
Electronic_ISBN :
2161-8127
DOI :
10.1109/PCICON.2015.7435092