DocumentCode
376203
Title
Adding insult to injury-molecular and functional perturbations of voltage-dependent calcium channel expression in disease
Author
McEnery, Maureen W.
Author_Institution
Dept. of Physiol. & Biophys., Case Western Reserve Univ., Cleveland, OH, USA
Volume
1
fYear
2001
fDate
2001
Abstract
VDCC (voltage-dependent calcium channels) play a central role as scaffolding proteins for the binding of synaptic vesicle and presynaptic membrane proteins. In addition to spatial constraints imposed by the localization of VDCC, the calcium that enters neurons via VDCC is exquisitely regulated kinetically leading to the formation of "microdomains" that extend from the mouth of the VDCC to a distance of approximately 50 nm in radius. Experimental access to this nanoscale domain has been limited. Recently, the importance of VDCC to normal neuronal function has been underscored by the identification of genetic lesions in specific VDCC subunits that lead to inherited forms of neuropathies in humans and mice. The primary defect is often coupled to downstream compensatory effects that result in the altered pattern of expression of non-mutated VDCC subunits. However, the connection between the molecular defects that arise within these microdomains as a consequence of mutated VDCC subunits and the ensuing neuropathy is not well established. We present recent biophotonic advances that afford experimental access and insight into this nanoscale microdomain. Furthermore we present novel molecular and biochemical probes that offer detailed analysis of the pattern of VDCC subunit expression and function in normal and diseased neurons. We anticipate that this high-resolution molecular analysis will delineate features that can serve as both diagnostic signatures of disease as well as potential therapeutic targets
Keywords
biochemistry; bioelectric potentials; biomembrane transport; calcium; diseases; proteins; Ca; biochemical probes; biophotonic advances; channel expression in disease; disease diagnostic signatures; functional perturbations; high-resolution molecular analysis; membrane potential; microdomains; molecular perturbations; molecular probes; neuronal communication; scaffolding proteins; subunit expression; therapeutic targets; voltage-dependent calcium channels; Biomembranes; Calcium; Genetics; Humans; Lesions; Mice; Mouth; Neurons; Proteins; Voltage;
fLanguage
English
Publisher
ieee
Conference_Titel
Lasers and Electro-Optics Society, 2001. LEOS 2001. The 14th Annual Meeting of the IEEE
Conference_Location
San Diego, CA
ISSN
1092-8081
Print_ISBN
0-7803-7105-4
Type
conf
DOI
10.1109/LEOS.2001.969341
Filename
969341
Link To Document