• DocumentCode
    37636
  • Title

    On the Structure of the Minimum Average Redundancy Code for Monotone Sources

  • Author

    Rastegari, Parvin ; Khosravifard, Mohammadali ; Narimani, H. ; Gulliver, T.A.

  • Author_Institution
    Dept. of Electr. & Comput. Eng., Isfahan Univ. of Technol., Isfahan, Iran
  • Volume
    18
  • Issue
    4
  • fYear
    2014
  • fDate
    Apr-14
  • Firstpage
    664
  • Lastpage
    667
  • Abstract
    The source coding problem is considered where the only information known about the source is the number of symbols n and the order of the symbol probabilities. In this case, the code which achieves the minimum average redundancy is known as the M code. It is the Huffman code for the average distribution of monotone sources, and thus is a fixed code which does not depend on the symbol probabilities. The M code is a near-optimal code not only in the sense of average redundancy, but also in terms of the redundancy for almost all monotone sources. No simple expression is known for the codeword lengths of the M code for a given alphabet size. In this letter, the structure of this code is investigated, and an estimate is given for the number of codewords of a given length. In particular, the number of codewords of length j +1 for encoding 2n symbols is shown to be almost twice the number of codewords of length j for encoding n symbols.
  • Keywords
    Huffman codes; probability; redundancy; source coding; Huffman code; codeword lengths; minimum average redundancy code; monotone sources; near-optimal code; source coding problem; symbol probabilities; Approximation methods; Huffman coding; Redundancy; Average redundancy; Kraft sum; M code; monotone sources; multiplicity of codelengths;
  • fLanguage
    English
  • Journal_Title
    Communications Letters, IEEE
  • Publisher
    ieee
  • ISSN
    1089-7798
  • Type

    jour

  • DOI
    10.1109/LCOMM.2014.030114.132842
  • Filename
    6774411