DocumentCode :
3766092
Title :
An efficient algorithm for information decomposition and extraction
Author :
Anuran Makur;Fabián Kozynski;Shao-Lun Huang;Lizhong Zheng
Author_Institution :
EECS Department, Massachusetts Institute of Technology, United States
fYear :
2015
Firstpage :
972
Lastpage :
979
Abstract :
The Hirschfeld-Gebelein-Rényi maximal correlation is a well-known measure of statistical dependence between two (possibly categorical) random variables. In inference problems, the maximal correlation functions can be viewed as so called features of observed data that carry the largest amount of information about some latent variables. These features are in general non-linear functions, and are particularly useful in processing high-dimensional observed data. The alternating conditional expectations (ACE) algorithm is an efficient way to compute these maximal correlation functions. In this paper, we use an information theoretic approach to interpret the ACE algorithm as computing the singular value decomposition of a linear map between spaces of probability distributions. With this approach, we demonstrate the information theoretic optimality of the ACE algorithm, analyze its convergence rate and sample complexity, and finally, generalize it to compute multiple pairs of correlation functions from samples.
Keywords :
"Correlation","Feature extraction","Data mining","Probability distribution","Random variables","Noise measurement","Principal component analysis"
Publisher :
ieee
Conference_Titel :
Communication, Control, and Computing (Allerton), 2015 53rd Annual Allerton Conference on
Type :
conf
DOI :
10.1109/ALLERTON.2015.7447113
Filename :
7447113
Link To Document :
بازگشت