Title :
Photovoltaic (PV) parameter estimation of a multicrystalline panel using developed iterative and non-iterative methods
Author :
Abdellatif Obbadi;Youssef Errami;Abdelkrim Elfajri;Mustapha Agunaou;Mohammadi Benhmida;Smail Sahnoun
Author_Institution :
Laboratory: Electronics, Instrumentation and Energy, Team: Exploitation and Processing of Renewable Energy, Faculty of Science University, Chouaib Doukkali, Department of Physics, Route Ben Maachou, 24000 El-Jadida, Morocco
Abstract :
Mathematical modeling of photovoltaic (PV) modules is essential for any performance optimization operation or diagnostic of the photovoltaic generator under changing environmental conditions. The limited data available are provided by commercial manufacturing datasheets. The accurately estimating of these parameters remains a challenge for researchers. There is great diversity in the models and the estimation methods i.e., iterative and non-iterative methods. In this paper we are interested in estimating the parameters of both complete (5-parameter) and simplified (4-parameter) single-diode PV models by non-iterative and iterative methods i.e., the Newton-Raphson and Halley´s method. The aim is to predict the behavior of a multicrystalline Kyocera KC200GT module under real environmental conditions. A new parameter Series/Parallel Ratio (SPR) ranking photovoltaic modules is defined. Depending on the value SPR, we can neglect the series or shunt resistance of single-diode model without compromising accuracy. The proposed approach is a quick and non-iterative method that allows the estimation of PV parameters. It can be used in tracking applications of Maximum Power Point Tracking (MPPT) for on-line. The results obtained with non-iterative and iterative methods are compared with experimental data. The results are discussed in terms of precision and order statistical errors. They show the limits of the use of these approaches and their relevance. The method is verified by the simulation using MATLAB/Simulink environment.
Keywords :
"Mathematical model","Iterative methods","Resistance","Photovoltaic systems","Parameter estimation","MATLAB"
Conference_Titel :
Renewable and Sustainable Energy Conference (IRSEC), 2015 3rd International
Electronic_ISBN :
2380-7393
DOI :
10.1109/IRSEC.2015.7455009