Title :
Generic action recognition from egocentric videos
Author :
Suriya Singh;Chetan Arora;C. V. Jawahar
Author_Institution :
CVIT, IIIT Hyderabad, India
Abstract :
Egocentric cameras are wearable cameras mounted on a person´s head or shoulder. With their ability to have first person view, such cameras are spawning new set of exciting applications in computer vision. Recognising activity of the wearer from an egocentric video is an important but challenging problem. The task is made especially difficult because of unavailability of wearer´s pose as well as extreme camera shake due to motion of wearer´s head. Solutions suggested so far for the problem, have either focussed on short term actions such as pour, stir etc. or long term activities such as walking, driving etc. The features used in both the styles are very different and the technique developed for one style often fail miserably on other kind. In this paper we propose a technique to identify if a long term or a short term action is present in an egocentric video segment. This allows us to have a generic first-person action recognition system where we can recognise both short term as well as long term actions of the wearer. We report an accuracy of 90.15% for our classifier on publicly available egocentric video dataset comprising 18 hours of video amounting to 1.9 million tested samples.
Keywords :
"Videos","Cameras","Optical imaging","Trajectory","Head","Computer vision","Motion segmentation"
Conference_Titel :
Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG), 2015 Fifth National Conference on
DOI :
10.1109/NCVPRIPG.2015.7489943