DocumentCode :
3784437
Title :
Distribution-free consistency of a nonparametric kernel regression estimate and classification
Author :
A. Krzyzak;M. Pawlak
Author_Institution :
McGill University, Canada
Volume :
30
Issue :
1
fYear :
1984
Firstpage :
78
Lastpage :
81
Abstract :
It is shown that the kernel estimate of the regressionE(Y|X = x)is weakly or strongly consistent for almost allx(\mu), where\muis the probability measure ofX. The result is valid for any distribution ofX. The asymptotical optimality of classification rules derived from the estimate is examined. The optimality is independent of class distributions, i.e., it is distribution-free.
Journal_Title :
IEEE Transactions on Information Theory
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.1984.1056842
Filename :
1056842
Link To Document :
بازگشت