• DocumentCode
    37935
  • Title

    Improved Generalized Eigenvalue Proximal Support Vector Machine

  • Author

    Yuan-Hai Shao ; Nai-Yang Deng ; Wei-Jie Chen ; Zhen Wang

  • Author_Institution
    Zhijiang Coll., Zhejiang Univ. of Technol., Hangzhou, China
  • Volume
    20
  • Issue
    3
  • fYear
    2013
  • fDate
    Mar-13
  • Firstpage
    213
  • Lastpage
    216
  • Abstract
    In this letter, we propose an improved version of generalized eigenvalue proximal support vector machine (GEPSVM), called IGEPSVM for short. The main improvements are 1) the generalized eigenvalue decomposition is replaced by the standard eigenvalue decomposition, resulting in simpler optimization problems without the possible singularity. 2) An extra meaningful parameter is introduced, resulting in the stronger classification generalization ability. Experimental results on both the artificial datasets and several benchmark datasets show that our IGEPSVM is superior to GEPSVM in both computation time and classification accuracy.
  • Keywords
    eigenvalues and eigenfunctions; generalisation (artificial intelligence); optimisation; pattern classification; support vector machines; IGEPSVM; artificial datasets; benchmark datasets; classification generalization ability; improved generalized eigenvalue proximal support vector machine; optimization problem; pattern classification; standard eigenvalue decomposition; Accuracy; Benchmark testing; Educational institutions; Eigenvalues and eigenfunctions; Standards; Support vector machines; Training; Eigenvalue; pattern classification; proximal classification; support vector machine;
  • fLanguage
    English
  • Journal_Title
    Signal Processing Letters, IEEE
  • Publisher
    ieee
  • ISSN
    1070-9908
  • Type

    jour

  • DOI
    10.1109/LSP.2012.2216874
  • Filename
    6293857