DocumentCode :
381039
Title :
An neural network based adaptive control for liquid level of molten steel smelting non-crystalloid flimsy alloy line
Author :
Yanhong, Xiao ; Hongjun, Hu ; Jiang Huixia ; Jinglin, Zhou ; Qi, Yang
Author_Institution :
Inst. of Electr. & Inf. Eng., Hunan Univ., Changsha, China
Volume :
2
fYear :
2002
fDate :
2002
Firstpage :
1440
Abstract :
A new method based on neural network for controlling the liquid level of molten steel smelting non-crystalloid flimsy alloy line is presented. The improved BP neural network is used to adjust the parameter of the PID controller. The designed system retains not only the good robustness to the fluctuant of system parameters and effectiveness of the neural network, but also the universality of the PID controller. The result of simulation shows the availability for application and good dynamic characteristics of the controller. We conclude that the controller can satisfy the demand for the liquid level control of molten steel.
Keywords :
adaptive control; backpropagation; feedforward neural nets; level control; neurocontrollers; process control; steel industry; three-term control; PID controller; adaptive control; backpropagation neural network; dynamic characteristics; liquid level control; molten steel; robustness; smelting noncrystalline flimsy alloy; Adaptive control; Neural networks; Smelting; Steel;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Intelligent Control and Automation, 2002. Proceedings of the 4th World Congress on
Print_ISBN :
0-7803-7268-9
Type :
conf
DOI :
10.1109/WCICA.2002.1020821
Filename :
1020821
Link To Document :
بازگشت