DocumentCode :
38275
Title :
Background Density Nonparametric Estimation With Data-Adaptive Bandwidths for the Detection of Anomalies in Multi-Hyperspectral Imagery
Author :
Matteoli, Stefania ; Veracini, Tiziana ; Diani, Marco ; Corsini, Giovanni
Author_Institution :
Dipartimento di Ingegneria dell´Informazione, Università di Pisa, Pisa, Italy
Volume :
11
Issue :
1
fYear :
2014
fDate :
Jan. 2014
Firstpage :
163
Lastpage :
167
Abstract :
This letter presents a scheme for detecting global anomalies, in which a likelihood ratio test based decision rule is applied in conjunction with an automated data-driven estimation of the background probability density function (PDF). The latter is reliably estimated with a nonparametric variable-band width kernel density estimator (VKDE), without making any distributional assumption. With respect to conventional fixed bandwidth KDE (FKDE), which lacks adaptivity due to the use of a bandwidth that is fixed across the entire feature space, VKDE lets the bandwidths adaptively vary pixel by pixel, tailoring the amount of smoothing to the local data density. Two multispectral images are employed to explore the potential of VKDE background PDF estimation for detecting anomalies in a scene with respect to conventional nonadaptive FKDE.
Keywords :
hyperspectral imaging; image processing; maximum likelihood estimation; probability; anomalies detection; background density nonparametric estimation; data-adaptive bandwidths; decision rule; fixed bandwidth KDE; likelihood ratio test; multihyperspectral imagery; nonparametric variable-band width kernel density estimator; probability density function; Anomaly detection; multi-hyperspectral images; variable bandwidth kernel density estimation;
fLanguage :
English
Journal_Title :
Geoscience and Remote Sensing Letters, IEEE
Publisher :
ieee
ISSN :
1545-598X
Type :
jour
DOI :
10.1109/LGRS.2013.2250907
Filename :
6509402
Link To Document :
بازگشت