DocumentCode
3835
Title
Sensitivity reduction of unscented Kalman filter about parameter uncertainties
Author
Haijun Shen ; Karlgaard, Christopher D.
Author_Institution
Anal. Mech. Assoc., Inc., Hampton, VA, USA
Volume
9
Issue
4
fYear
2015
fDate
4 2015
Firstpage
374
Lastpage
383
Abstract
This study aims to reduce the sensitivity of the unscented Kalman filter (UKF) estimates with respect to uncertain model parameters, leading to a more robust UKF. The standard minimum-variance cost index is augmented to include a penalty on the sensitivities of the state estimates about parameter uncertainties in the form of a weighted norm. A new filter gain is thus obtained, and the desensitised UKF (DUKF) provides better estimation of the true states than the standard UKF with an imperfect plant model. Numerical examples are shown to demonstrate the efficacy of the DUKF.
Keywords
Kalman filters; DUKF; Sensitivity reduction; desensitised UKF; filter gain; parameter uncertainties; standard minimum-variance cost index; unscented Kalman filter;
fLanguage
English
Journal_Title
Radar, Sonar & Navigation, IET
Publisher
iet
ISSN
1751-8784
Type
jour
DOI
10.1049/iet-rsn.2013.0408
Filename
7070527
Link To Document