• DocumentCode
    3835
  • Title

    Sensitivity reduction of unscented Kalman filter about parameter uncertainties

  • Author

    Haijun Shen ; Karlgaard, Christopher D.

  • Author_Institution
    Anal. Mech. Assoc., Inc., Hampton, VA, USA
  • Volume
    9
  • Issue
    4
  • fYear
    2015
  • fDate
    4 2015
  • Firstpage
    374
  • Lastpage
    383
  • Abstract
    This study aims to reduce the sensitivity of the unscented Kalman filter (UKF) estimates with respect to uncertain model parameters, leading to a more robust UKF. The standard minimum-variance cost index is augmented to include a penalty on the sensitivities of the state estimates about parameter uncertainties in the form of a weighted norm. A new filter gain is thus obtained, and the desensitised UKF (DUKF) provides better estimation of the true states than the standard UKF with an imperfect plant model. Numerical examples are shown to demonstrate the efficacy of the DUKF.
  • Keywords
    Kalman filters; DUKF; Sensitivity reduction; desensitised UKF; filter gain; parameter uncertainties; standard minimum-variance cost index; unscented Kalman filter;
  • fLanguage
    English
  • Journal_Title
    Radar, Sonar & Navigation, IET
  • Publisher
    iet
  • ISSN
    1751-8784
  • Type

    jour

  • DOI
    10.1049/iet-rsn.2013.0408
  • Filename
    7070527