• DocumentCode
    384075
  • Title

    DVHMM: variable length text recognition error model

  • Author

    Takasu, Atsuhiro ; Aihara, Kenro

  • Author_Institution
    Nat. Inst. of Informatics, Tokyo, Japan
  • Volume
    3
  • fYear
    2002
  • fDate
    2002
  • Firstpage
    110
  • Abstract
    This paper proposes a text recognition error model called the dual variable length output hidden Markov model (DVHMM) and gives a parameter estimation algorithm based on the EM algorithm. Although existing probabilistic error models are limited to substitution (1, 1), insertion (1, 0), and deletion (0, 1) errors, the DVHMM can handle error patterns of any pair (i, j) of lengths including substitution, insertion, and deletion.
  • Keywords
    document image processing; errors; hidden Markov models; optical character recognition; parameter estimation; probability; DVHMM; OCR; deletion; document recognition; dual variable length output hidden Markov model; insertion; parameter estimation; probabilistic error models; substitution; variable length text recognition error model; Automata; Character recognition; Error correction; Hidden Markov models; Informatics; Matrices; Optical character recognition software; Pattern recognition; Speech recognition; Text recognition;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Pattern Recognition, 2002. Proceedings. 16th International Conference on
  • ISSN
    1051-4651
  • Print_ISBN
    0-7695-1695-X
  • Type

    conf

  • DOI
    10.1109/ICPR.2002.1047807
  • Filename
    1047807