DocumentCode :
3846146
Title :
On the Suitability of the Bandler–Kohout Subproduct as an Inference Mechanism
Author :
Martin Stepnicka ;Balasubramaniam Jayaram
Author_Institution :
Institute for Research and Applications of Fuzzy Modeling, University of Ostrava, Ostrava, Czech Republic
Volume :
18
Issue :
2
fYear :
2010
Firstpage :
285
Lastpage :
298
Abstract :
Fuzzy relational inference (FRI) systems form an important part of approximate reasoning schemes using fuzzy sets. The compositional rule of inference (CRI), which was introduced by Zadeh, has attracted the most attention so far. In this paper, we show that the FRI scheme that is based on the Bandler-Kohout (BK) subproduct, along with a suitable realization of the fuzzy rules, possesses all the important properties that are cited in favor of using CRI, viz., equivalent and reasonable conditions for their solvability, their interpolative properties, and the preservation of the indistinguishability that may be inherent in the input fuzzy sets. Moreover, we show that under certain conditions, the equivalence of first-infer-then-aggregate (FITA) and first-aggregate-then-infer (FATI) inference strategies can be shown for the BK subproduct, much like in the case of CRI. Finally, by addressing the computational complexity that may exist in the BK subproduct, we suggest a hierarchical inferencing scheme. Thus, this paper shows that the BK-subproduct-based FRI is as effective and efficient as the CRI itself.
Keywords :
"Inference mechanisms","Fuzzy sets","Fuzzy systems","Chromium","Computational complexity","Equations","Fuzzy control","Automatic control","Decision making"
Journal_Title :
IEEE Transactions on Fuzzy Systems
Publisher :
ieee
ISSN :
1063-6706
Type :
jour
DOI :
10.1109/TFUZZ.2010.2041007
Filename :
5393084
Link To Document :
بازگشت