DocumentCode :
3848258
Title :
Knowledge Acquisition in Fuzzy-Rule-Based Systems With Particle-Swarm Optimization
Author :
R. P. Prado;S. Garcia-Gal?n;J. E. Muñoz Exposito;A. J. Yuste
Author_Institution :
Telecommunication Engineering Department, Jaé
Volume :
18
Issue :
6
fYear :
2010
Firstpage :
1083
Lastpage :
1097
Abstract :
Knowledge acquisition is a long-standing problem in fuzzy-rule-based systems. In spite of the existence of several approaches, much effort is still required to increase the efficiency of the learning process. This study introduces a new method for the fuzzy-rule evolution that forms an expert system knowledge: the knowledge acquisition with a swarm-intelligence approach (KASIA). Specifically, this strategy is based on the use of particle-swarm optimization (PSO) to obtain the antecedents, consequences, and connectives of the rules. To test the feasibility of the suggested method, the inverted-pendulum problem is studied, and results are compared for two of the most extensively used methodologies in machine learning: the genetic-based Pittsburgh approach and the Q-learning-based strategy, i.e., state-action-reward-state-action (SARSA). Moreover, KASIA is analyzed as a learning strategy in fuzzy-rule-based metascheduler design for grid computing, and performance is compared with other scheduling strategies based on genetic learning and existing scheduling approaches, i.e., EASY-backfilling and ESG+local periodical search. To be more precise, simulation results prove the fact that the proposed strategy outperforms classical learning approaches in terms of final results and computational effort. Furthermore, the main advantage is the capability to control convergence and its simplicity.
Keywords :
"Knowledge acquisition","Fuzzy systems","Knowledge based systems","Particle swarm optimization","Processor scheduling","Hybrid intelligent systems","Expert systems","Testing","Machine learning","Performance analysis"
Journal_Title :
IEEE Transactions on Fuzzy Systems
Publisher :
ieee
ISSN :
1063-6706
Type :
jour
DOI :
10.1109/TFUZZ.2010.2062525
Filename :
5535078
Link To Document :
بازگشت