DocumentCode :
3851600
Title :
Applications of Tauberian Theorem for High-SNR Analysis of Performance over Fading Channels
Author :
Yuan Zhang;Cihan Tepedelenlioglu
Author_Institution :
School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, AZ 85287, USA
Volume :
11
Issue :
1
fYear :
2012
Firstpage :
296
Lastpage :
304
Abstract :
This paper derives high-SNR asymptotic average error rates over fading channels by relating them to the outage probability, under mild assumptions. The analysis is based on the Tauberian theorem for Laplace-Stieltjes transforms which is grounded on the notion of regular variation, and applies to a wider range of channel distributions than existing approaches. The theory of regular variation is argued to be the proper mathematical framework for finding sufficient and necessary conditions for outage events to dominate high-SNR error rate performance. It is proved that the diversity order being d and the cumulative distribution function (CDF) of the channel power gain having variation exponent d at 0 imply each other, provided that the instantaneous error rate is upper-bounded by an exponential function of the instantaneous SNR. High-SNR asymptotic average error rates are derived for specific instantaneous error rates. Compared to existing approaches in the literature, the asymptotic expressions are related to the channel distribution in a much simpler manner herein, and related with outage more intuitively. The high-SNR asymptotic error rate is also characterized under diversity combining schemes with the channel power gain of each branch having a regularly varying CDF. Numerical results are shown to corroborate our theoretical analysis.
Keywords :
"Diversity reception","Fading","Signal to noise ratio","Transforms","Binary phase shift keying","Bit error rate"
Journal_Title :
IEEE Transactions on Wireless Communications
Publisher :
ieee
ISSN :
1536-1276
Type :
jour
DOI :
10.1109/TWC.2011.110811.110613
Filename :
6087254
Link To Document :
بازگشت