• DocumentCode
    3852008
  • Title

    Optimized Burst LSP Design for Absolute QoS Guarantees in GMPLS-Controlled OBS Networks

  • Author

    P. Pedroso;J. Perelló;D. Careglio;M. Klinkowski;S. Spadaro

  • Author_Institution
    Advanced Broadband Communications Center (CCABA), Universitat Politè
  • Volume
    4
  • Issue
    2
  • fYear
    2012
  • Firstpage
    66
  • Lastpage
    77
  • Abstract
    Over the past decade, the scientific community has thrown itself into assessing optical burst switching (OBS) as the switching technology for next-generation all-optical networks. In this regard, a significant amount of work has concentrated on providing OBS with the required carrier-class features. During this process, however, little attention has been paid to fundamental questions on the interoperability and interworking issues that OBS will have to face in a heterogeneous network scenario such as the future Internet. This article introduces a generalized multi-protocol label switching (GMPLS)-based control plane architecture for future OBS networks. This GMPLS/OBS control plane solution leverages on the GMPLS interoperability to enable seamless vertical and horizontal OBS integration with different switching layers under a common control plane. The burst label switched path (b-LSP) entity has been introduced to accomplish this purpose, as well as to guarantee end-users´ quality of service (QoS) requirements to effectively support emerging data applications. The establishment of a b-LSP does not entail explicit resource reservation, but the addition of new entries in the OBS node forwarding tables with the resources available for that b-LSP. Hence, by making a resource available to multiple b-LSPs, the statistical multiplexing nature of OBS is preserved. A mixed integer linear programming formulation has been presented to get the most out of the available resources given the expected traffic demands and their QoS requirements. Moreover, in the network operation phase, GMPLS-driven b-LSP capacity reconfigurations are dynamically triggered whenever unfavorable network conditions are detected. An exhaustive simulation campaign assesses the performance of the proposed GMPLS/OBS network architecture on different network scenarios. Finally, future research lines on the topic are outlined.
  • Keywords
    "Quality of service","Optical switches","Routing","Protocols","Optimized production technology"
  • Journal_Title
    IEEE/OSA Journal of Optical Communications and Networking
  • Publisher
    ieee
  • ISSN
    1943-0620
  • Type

    jour

  • DOI
    10.1364/JOCN.4.000066
  • Filename
    6151966