DocumentCode :
3852639
Title :
SLIC Superpixels Compared to State-of-the-Art Superpixel Methods
Author :
Radhakrishna Achanta;Appu Shaji;Kevin Smith;Aurelien Lucchi;Pascal Fua;Sabine Süsstrunk
Author_Institution :
Ecole Polytechnique Federale de Lausanne, Lausanne
Volume :
34
Issue :
11
fYear :
2012
Firstpage :
2274
Lastpage :
2282
Abstract :
Computer vision applications have come to rely increasingly on superpixels in recent years, but it is not always clear what constitutes a good superpixel algorithm. In an effort to understand the benefits and drawbacks of existing methods, we empirically compare five state-of-the-art superpixel algorithms for their ability to adhere to image boundaries, speed, memory efficiency, and their impact on segmentation performance. We then introduce a new superpixel algorithm, simple linear iterative clustering (SLIC), which adapts a k-means clustering approach to efficiently generate superpixels. Despite its simplicity, SLIC adheres to boundaries as well as or better than previous methods. At the same time, it is faster and more memory efficient, improves segmentation performance, and is straightforward to extend to supervoxel generation.
Keywords :
"Clustering algorithms","Image segmentation","Complexity theory","Image color analysis","Image edge detection","Measurement uncertainty","Approximation algorithms"
Journal_Title :
IEEE Transactions on Pattern Analysis and Machine Intelligence
Publisher :
ieee
ISSN :
0162-8828
Type :
jour
DOI :
10.1109/TPAMI.2012.120
Filename :
6205760
Link To Document :
بازگشت