DocumentCode :
389306
Title :
Document segmentation using wavelet-domain multi-state hidden Markov models
Author :
Song, Jin-Ping ; Yang, Xiao-Yi ; Hou, Yu-hua ; Tang, Yuan Y.
Author_Institution :
Coll. of Math. & Inf. Sci., Henan Univ., China
Volume :
2
fYear :
2002
fDate :
2002
Firstpage :
991
Abstract :
Presents a document segmentation algorithm, called context-adapted wavelet-domain hidden Markov tree (CAHMT) model, which extends the wavelet-domain hidden Markov tree (HMT) model. The proposed CAHMT can achieve more accurate quality with low computation complexity in document segmentation. In addition to further improving the segmenting performance, we combine a differential operator and the lowest frequency subband with CAHMT and produce much better visual segmentation quality than the HMT.
Keywords :
Haar transforms; document image processing; hidden Markov models; image segmentation; probability; trees (mathematics); wavelet transforms; Haar wavelet; Wavelet transform; computation complexity; context-adapted wavelet-domain hidden Markov tree model; document segmentation; visual segmentation quality; Computer science; Context modeling; Educational institutions; Electronic mail; Frequency; Hidden Markov models; Information science; Mathematical model; Mathematics; Wavelet coefficients;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Machine Learning and Cybernetics, 2002. Proceedings. 2002 International Conference on
Print_ISBN :
0-7803-7508-4
Type :
conf
DOI :
10.1109/ICMLC.2002.1174532
Filename :
1174532
Link To Document :
بازگشت