DocumentCode :
390989
Title :
On two projection related properties of the L2 optimal reduced order model
Author :
Halevi, Yoram
Author_Institution :
Fac. of Mech. Eng., Technion - Israel Inst. of Technol., Haifa, Israel
Volume :
3
fYear :
2002
fDate :
10-13 Dec. 2002
Firstpage :
2919
Abstract :
The paper investigates reduced order models obtained by projection of a high order system, and presents two properties of optimal L2 reduced order models. It deals first with the existence and uniqueness of a projection that relates the given full order and reduced order systems. Then it is shown that in cases where not all models of a certain order can be obtained by a projection, the optimal L2 reduced order model is obtained by a unique projection, which resides on the boundary of the set of attainable models. Another result that is presented is matrix inequalities that characterize the optimal projection.
Keywords :
eigenvalues and eigenfunctions; linear matrix inequalities; linear systems; optimisation; reduced order systems; state-space methods; eigenvalues; high order system; linear invariant system; matrix inequalities; optimal reduced order model; optimality condition; state space; Cost function; Electronic mail; Linear matrix inequalities; Mechanical engineering; Mechanical factors; Optimal control; Paper technology; Reduced order systems; State-space methods; USA Councils;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Decision and Control, 2002, Proceedings of the 41st IEEE Conference on
ISSN :
0191-2216
Print_ISBN :
0-7803-7516-5
Type :
conf
DOI :
10.1109/CDC.2002.1184294
Filename :
1184294
Link To Document :
بازگشت