DocumentCode :
391295
Title :
Clustered regression analysis
Author :
Lindgren, David ; Ljung, Lennart
Author_Institution :
Div. of Autom. Control, Linkoping Univ., Sweden
Volume :
2
fYear :
2002
fDate :
10-13 Dec. 2002
Firstpage :
1838
Abstract :
Cluster structure in (multicollinear) data can be utilized by pattern recognition methods in order to find adequate subspaces for nonlinear regression. When regressing a particular severely nonlinear function, it is demonstrated that this approach is superior to polynomial PLS. It is also demonstrated that for nonlinear functions, the choice of regression explained variables onto the explaining variables, or vice-versa, is not arbitrary. Numerical experiments indicate that the classical statistical model is more powerful than the inverse regression approach.
Keywords :
pattern recognition; statistical analysis; clustered regression analysis; multicollinear data; nonlinear functions; nonlinear regression; pattern recognition; Automatic control; Covariance matrix; Noise measurement; Parameter estimation; Pattern recognition; Polynomials; Q measurement; Regression analysis; State estimation; Tongue;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Decision and Control, 2002, Proceedings of the 41st IEEE Conference on
ISSN :
0191-2216
Print_ISBN :
0-7803-7516-5
Type :
conf
DOI :
10.1109/CDC.2002.1184791
Filename :
1184791
Link To Document :
بازگشت