DocumentCode :
392
Title :
GPU Computing for Parallel Local Search Metaheuristic Algorithms
Author :
The Van Luong ; Melab, Nouredine ; Talbi, El-Ghazali
Author_Institution :
Lab. d´Inf. Fondamentale de Lille (LIFL), Univ. de Lille 1, Villeneuve d´Ascq, France
Volume :
62
Issue :
1
fYear :
2013
fDate :
Jan. 2013
Firstpage :
173
Lastpage :
185
Abstract :
Local search metaheuristics (LSMs) are efficient methods for solving complex problems in science and industry. They allow significantly to reduce the size of the search space to be explored and the search time. Nevertheless, the resolution time remains prohibitive when dealing with large problem instances. Therefore, the use of GPU-based massively parallel computing is a major complementary way to speed up the search. However, GPU computing for LSMs is rarely investigated in the literature. In this paper, we introduce a new guideline for the design and implementation of effective LSMs on GPU. Very efficient approaches are proposed for CPU-GPU data transfer optimization, thread control, mapping of neighboring solutions to GPU threads, and memory management. These approaches have been experimented using four well-known combinatorial and continuous optimization problems and four GPU configurations. Compared to a CPU-based execution, accelerations up to times 80 are reported for the large combinatorial problems and up to times 240 for a continuous problem. Finally, extensive experiments demonstrate the strong potential of GPU-based LSMs compared to cluster or grid-based parallel architectures.
Keywords :
graphics processing units; optimisation; parallel processing; search problems; storage management; CPU-GPU data transfer optimization; GPU-based massively parallel computing; LSM; continuous optimization problems; grid-based parallel architectures; memory management; parallel local search metaheuristic algorithms; thread control; Computer architecture; Encoding; Graphics processing unit; Instruction sets; Optimization; Parallel processing; Search problems; GPU computing; Parallel metaheuristics; local search metaheuristics; performance evaluation;
fLanguage :
English
Journal_Title :
Computers, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9340
Type :
jour
DOI :
10.1109/TC.2011.206
Filename :
6060799
Link To Document :
بازگشت