Title :
PCA-based linear dynamical systems for multichannel EEG classification
Author :
Lee, Hyekyoung ; Choi, Seungjin
Abstract :
EEG-based brain computer interface (BCI) provides a new communication channel between human brain and computer. The classification of EEG data is an important task in EEG-based BCI. We present methods which jointly employ principal component analysis (PCA) and linear dynamical system (LDS) modeling for the task of EEG classification. Experimental study for the classification of EEG data during imagination of a left or right hand movement confirms the validity of our proposed methods.
Keywords :
electroencephalography; medical signal processing; principal component analysis; signal classification; EEG data classification; EEG-based BC1; EEG-based brain computer interface; PCA-based linear dynamical systems; communication channel; human brain; linear dynamical system; multichannel EEG classification; principal component analysis; Brain computer interfaces; Brain modeling; Covariance matrix; Eigenvalues and eigenfunctions; Electroencephalography; Feature extraction; Hidden Markov models; Matrix decomposition; Principal component analysis; Vectors;
Conference_Titel :
Neural Information Processing, 2002. ICONIP '02. Proceedings of the 9th International Conference on
Print_ISBN :
981-04-7524-1
DOI :
10.1109/ICONIP.2002.1198157