DocumentCode :
394406
Title :
Exploiting ensemble diversity for automatic feature extraction
Author :
Brown, Gavin ; Yao, Xin ; Wyatt, Jeremy ; Wersing, Heiko ; Sendhoff, Bernhard
Author_Institution :
Sch. of Comput. Sci., Univ. of Birmingham, UK
Volume :
4
fYear :
2002
fDate :
18-22 Nov. 2002
Firstpage :
1786
Abstract :
We present an automatic method, based on a neural network ensemble, for extracting multiple, diverse and complementary sets of useful classification features from high-dimensional data. We demonstrate the utility of these diverse representations for an image dataset, showing good classification accuracy and a high degree of dimensionality reduction. We then outline a number of possible extensions to the project in an evolutionary computation context.
Keywords :
backpropagation; feature extraction; multilayer perceptrons; pattern classification; backpropagation; dimensionality reduction; ensemble diversity; evolutionary computation; feature extraction; image dataset; multilayer perceptrons; neural network; neural network ensembles; pattern classification; Computer science; Costs; Data mining; Error correction; Evolutionary computation; Feature extraction; Mean square error methods; Neural networks; Research and development; State estimation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Neural Information Processing, 2002. ICONIP '02. Proceedings of the 9th International Conference on
Print_ISBN :
981-04-7524-1
Type :
conf
DOI :
10.1109/ICONIP.2002.1198981
Filename :
1198981
Link To Document :
بازگشت