Title :
Tracking multiple maneuvering point targets using multiple filter bank in infrared image sequence
Author :
Zaveri, Mukesh A. ; Desai, Uday B. ; Merchant, S.N.
Author_Institution :
Dept. of Electr. Eng., Indian Inst. of Technol., Bombay, India
Abstract :
Performance of any tracking algorithm depends upon the model selected to capture the target dynamics. In real world applications, no a priori knowledge about the target motion is available. Moreover, it could be a maneuvering target. The proposed method is able to track maneuvering or nonmaneuvering multiple point targets with large motion (±20 pixels) using multiple filter bank in an IR image sequence in the presence of clutter and occlusion due to clouds. The use of multiple filters is not new, but the novel idea here is that it uses single-step decision logic to switch over between filters. Our approach does not use any a priori knowledge about maneuver parameters, nor does it exploit a parameterized nonlinear model for the target trajectories. This is in contrast to: (i) interacting multiple model (IMM) filtering which required the maneuver parameters, and (ii) extended Kalman filter (EKF) or unscented Kalman filter (UKF), both of which require a parameterized model for the trajectories. We compared our approach for target tracking with IMM filtering using EKF and UKF for nonlinear trajectory models. UKF uses the nonlinearity of the target model, where as a first order linearization is used in case of the EKF. RMS for the predicted position error (RMS-PPE) obtained using our proposed methodology is significantly less in case of highly maneuvering target.
Keywords :
channel bank filters; filtering theory; image sequences; infrared imaging; nonlinear filters; target tracking; tracking filters; EKF; IMM filtering; IR image sequence; RMS predicted position error; UKF; clouds; clutter; extended Kalman filter; first order linearization; infrared image sequence; interacting multiple model filtering; multiple filter bank; multiple filters; multiple maneuvering point targets tracking; nonlinear trajectory models; nonlinearity of the target model; occlusion; pixels; single-step decision logic; target dynamics; target motion; tracking algorithm performance; unscented Kalman filter; Clouds; Filter bank; Filtering; Image sequences; Infrared imaging; Logic; Pixel; Switches; Target tracking; Trajectory;
Conference_Titel :
Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03). 2003 IEEE International Conference on
Print_ISBN :
0-7803-7663-3
DOI :
10.1109/ICASSP.2003.1202386