DocumentCode :
396222
Title :
A split-radix algorithm for 2-D DFT
Author :
Bouguezel, Saad ; Ahmad, M. Omair ; Swamy, M.N.S.
Author_Institution :
Dept. of Electr. & Comput. Eng., Concordia Univ., Montreal, Que., Canada
Volume :
3
fYear :
2003
fDate :
25-28 May 2003
Abstract :
In this paper, the split-radix approach for computing the one-dimensional (1-D) discrete Fourier transform (DFT) is extended for the vector-radix fast Fourier transform (FFT) to compute the two-dimensional (2-D) DFT of size 2(r1)×2(r2), using a radix-2×2 index map and a radix-8×8 map instead of a radix-2×2 index map and a radix-4×4 map as is done in the classical split vector radix FFT algorithms. Since a radix-8×8 index map and a method for combining the twiddle factors are used, the new algorithm provides significant savings compared to the 2-D FFT algorithms previously reported in terms of the arithmetic complexity, data transfer, index generation and twiddle factor evaluation or access to the lookup table. In addition, since the algorithm is expressed in a simple matrix form using the Kronecker product, it facilitates an easy implementation of the algorithm, and allows for an extension to the multidimensional case.
Keywords :
computational complexity; discrete Fourier transforms; fast Fourier transforms; matrix multiplication; 2D FFT algorithms; Kronecker product; arithmetic complexity; data transfer; discrete Fourier transform; index generation; lookup table access; matrix form; multidimensional case; split-radix algorithm; twiddle factor evaluation; vector-radix FFT algorithms; Arithmetic; Discrete Fourier transforms; Fast Fourier transforms; Hydrogen; Matrix decomposition; Multidimensional systems; Table lookup; Two dimensional displays;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Circuits and Systems, 2003. ISCAS '03. Proceedings of the 2003 International Symposium on
Print_ISBN :
0-7803-7761-3
Type :
conf
DOI :
10.1109/ISCAS.2003.1205115
Filename :
1205115
Link To Document :
بازگشت