DocumentCode :
397067
Title :
Genetically derived fuzzy c-means clustering algorithm for segmentation
Author :
Kachouie, Nezamoddin N. ; Alirezaie, Javad ; Raahemifar, Kaamran
Author_Institution :
Dept. of Electr. & Comput. Eng., Ryerson Univ., Toronto, Ont., Canada
Volume :
2
fYear :
2003
fDate :
4-7 May 2003
Firstpage :
1119
Abstract :
The proper classification of pixels is an important step in the realm of satellite imagery, to partition different land cover regions. This paper describes a clustering method that utilizes hard and fuzzy clustering algorithms. The performance of the algorithm is optimized using genetic algorithm, which searches the best cluster centers to initialize the fuzzy partition matrix in place of random initialization. The proposed approach provides accurate clustering results for gray-level images. Comparison between segmentation results of hard c-means, fuzzy c-means and fuzzy c-means genetic algorithm (FGA) is presented.
Keywords :
fuzzy neural nets; genetic algorithms; pattern clustering; clustering algorithm; fuzzy c-means; fuzzy partition matrix; genetic algorithm; gray-level images; random initialization; satellite imagery; Clustering algorithms; Clustering methods; Equations; Fuzzy sets; Genetic algorithms; Image segmentation; Iterative algorithms; Java; Partitioning algorithms; Satellites;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Electrical and Computer Engineering, 2003. IEEE CCECE 2003. Canadian Conference on
ISSN :
0840-7789
Print_ISBN :
0-7803-7781-8
Type :
conf
DOI :
10.1109/CCECE.2003.1226093
Filename :
1226093
Link To Document :
بازگشت