DocumentCode :
407552
Title :
Soft computing tools for the simulation of efficient nanodevice models
Author :
Sarkar, Subir Kumar ; Biswas, Auup Kumar ; Choudhury, Sushobhan
Author_Institution :
Dept. of Electron. & Telecommun. Eng., Jadavpur Univ., Kolkata, India
fYear :
2003
fDate :
16-18 Dec. 2003
Firstpage :
25
Lastpage :
30
Abstract :
The purpose of this article is to predict the optimized values of the system parameters for efficient nanodevice models incorporating the relevant scattering mechanisms and carrier distribution function. Both Genetic algorithm and artificial neural network have been employed here to predict the optimized system parameters for getting the desired nano device models.
Keywords :
III-V semiconductors; S-parameters; gallium arsenide; genetic algorithms; nanotechnology; neural nets; semiconductor device models; semiconductor quantum wires; GaAs; artificial neural network; carrier distribution function; genetic algorithm; nanodevice models; scattering mechanisms; simulation; soft computing tools; system parameters; Artificial neural networks; Computational modeling; Genetic algorithms; Nanobioscience; Nanoscale devices; Optical materials; Optical scattering; Predictive models; Semiconductor materials; Wires;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Electron Devices and Solid-State Circuits, 2003 IEEE Conference on
Print_ISBN :
0-7803-7749-4
Type :
conf
DOI :
10.1109/EDSSC.2003.1283476
Filename :
1283476
Link To Document :
بازگشت