DocumentCode :
410483
Title :
Optimal image classification employing "optimal" polarimetric variables
Author :
Ainsworth, T.L. ; Lee, J.S.
Author_Institution :
Remote Sensing Div., Naval Res. Lab., Washington, DC, USA
Volume :
2
fYear :
2003
fDate :
21-25 July 2003
Firstpage :
696
Abstract :
Analysis of polarimetric SAR data often proceeds after first identifying important degrees of freedom in the data, thereby reducing the dimensionality of the problem. Various derived parameters (e.g. entropy, polarization fraction) and/or descriptions of polarimetric data (e.g. scattering matrix, covariance matrix, Stokes Parameters) are employed to effectively reduce the dimensionality of the data while at the same time preserving the relevant polarimetric information. The classification presented in this work involves two steps: first determine the reduced set of variables, from the data, that "optimally" represents the polarimetric information. Second, employ these newfound variables to segment (and classify) the polarimetric SAR image. Finally, the classification results are compared with standard statistical maximum likelihood techniques.
Keywords :
geophysical signal processing; geophysical techniques; image classification; maximum likelihood estimation; radar polarimetry; remote sensing by radar; synthetic aperture radar; Stokes parameters; covariance matrix; degrees of freedom; dimensionality; entropy; optimal image classification; optimal polarimetric variables; polarimetric SAR data; polarimetric SAR image; polarimetric information; polarization fraction; scattering matrix; statistical maximum likelihood techniques; Cost function; Covariance matrix; Entropy; Image analysis; Image classification; Laboratories; Polarization; Remote sensing; Scattering parameters; Stokes parameters;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Geoscience and Remote Sensing Symposium, 2003. IGARSS '03. Proceedings. 2003 IEEE International
Print_ISBN :
0-7803-7929-2
Type :
conf
DOI :
10.1109/IGARSS.2003.1293887
Filename :
1293887
Link To Document :
بازگشت