DocumentCode :
411178
Title :
The classification of AVHRR thermal infrared data and ground weather temperature data by using neural network
Author :
Jianwen, Ma ; Hasibagan ; Buheosr ; Zijiang, Zhou
Author_Institution :
Inst. of Remote Sensing Appl., Chinese Acad. of Sci., Beijing, China
Volume :
6
fYear :
2003
fDate :
21-25 July 2003
Firstpage :
3495
Abstract :
Shows that a better result was achieved by utilizing the BP neural network classification method than by using the split-window temperature retrieving (LST) method in China and Japan Asian Dust Storm Project.
Keywords :
atmospheric temperature; dust; geophysical techniques; geophysics computing; image classification; neural nets; radiometry; remote sensing; storms; AVHRR thermal infrared data; Advanced Very High Resolution Radiometer; BP neural network classification method; China; Japan Asian Dust Storm Project; ground temperature data; land-surface temperature measurement; split-window temperature retrieving; Artificial neural networks; Clouds; Lakes; Land surface temperature; Neural networks; Remote sensing; Snow; Storms; Temperature sensors; Testing;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Geoscience and Remote Sensing Symposium, 2003. IGARSS '03. Proceedings. 2003 IEEE International
Print_ISBN :
0-7803-7929-2
Type :
conf
DOI :
10.1109/IGARSS.2003.1294832
Filename :
1294832
Link To Document :
بازگشت