Title :
A Study on Optimal Design of the Triangle Type Permanent Magnet in IPMSM Rotor by Using the Box–Behnken Design
Author :
Jung-Ho Han ; Ju Lee ; Won-Ho Kim
Author_Institution :
Dept. of Electr. Eng., Hanyang Univ., Seoul, South Korea
Abstract :
This paper proposes an optimal rotor design method of an interior permanent magnet synchronous motor (IPMSM) by using a permanent magnet (PM) shape. An IPMSM is a structure in which PMs are buried in an inner rotor. The torque, torque ripple, and safety factor of IPMSM can vary depending on the position of the inserted PMs. To determine the optimal design variables according to the placement of the inserted PMs, parameter analysis was performed. Therefore, a response surface methodology, which is one of the statistical analysis design methods, was used. Among many other response surface methodologies, Box-Behnken design is the most commonly used. For the purpose of this research, Box-Behnken design was used to find the design parameter that can achieve minimum experimental variables of objective function. This paper determines the insert position of the PM to obtain high-torque, low-torque ripple by using a finite-element-method, and this paper obtains an optimal design by using a mechanical stiffness method in which a safety factor is considered.
Keywords :
finite element analysis; permanent magnet motors; response surface methodology; statistical analysis; synchronous motors; Box-Behnken design; IPMSM rotor; finite-element-method; interior permanent magnet synchronous motor; mechanical stiffness method; objective function; optimal rotor design method; permanent magnet shape; response surface methodology; statistical analysis design method; triangle type permanent magnet; Bridges; Finite element analysis; Linear programming; Response surface methodology; Rotors; Safety; Torque; Box???behnken design; finite-element-method (FEM); optimal design; permanent magnet (PM); safety factor; synchronous motor;
Journal_Title :
Magnetics, IEEE Transactions on
DOI :
10.1109/TMAG.2014.2362576