DocumentCode
4146
Title
Quasi-maximum feasible subsystem for geometric computer vision problems
Author
Chanki Yu ; Da Young Ju ; Sang Wook Lee
Author_Institution
Dept. of Media Technol., Sogang Univ., Seoul, South Korea
Volume
51
Issue
14
fYear
2015
fDate
7 9 2015
Firstpage
1071
Lastpage
1073
Abstract
A robust fitting algorithm for geometric computer vision problems under the L∞-norm optimisation framework is presented. It is essentially based on the maximum feasible subsystem (MaxFS) but it overcomes the computational limitation of the MaxFS for large data by finding only a quasi-maximum feasible subset. Experimental results demonstrate that the algorithm removes outliers more effectively than the other parameter estimation methods recently developed when the outlier-to-inlier ratio in a data set is high.
Keywords
computational geometry; computer vision; optimisation; parameter estimation; set theory; L∞-norm optimisation framework; MaxFS; geometric computer vision problems; model parameter estimation; outlier removal; outlier-to-inlier ratio; quasi-maximum feasible subset; quasi-maximum feasible subsystem; robust fitting algorithm;
fLanguage
English
Journal_Title
Electronics Letters
Publisher
iet
ISSN
0013-5194
Type
jour
DOI
10.1049/el.2015.0842
Filename
7150441
Link To Document