• DocumentCode
    4146
  • Title

    Quasi-maximum feasible subsystem for geometric computer vision problems

  • Author

    Chanki Yu ; Da Young Ju ; Sang Wook Lee

  • Author_Institution
    Dept. of Media Technol., Sogang Univ., Seoul, South Korea
  • Volume
    51
  • Issue
    14
  • fYear
    2015
  • fDate
    7 9 2015
  • Firstpage
    1071
  • Lastpage
    1073
  • Abstract
    A robust fitting algorithm for geometric computer vision problems under the L-norm optimisation framework is presented. It is essentially based on the maximum feasible subsystem (MaxFS) but it overcomes the computational limitation of the MaxFS for large data by finding only a quasi-maximum feasible subset. Experimental results demonstrate that the algorithm removes outliers more effectively than the other parameter estimation methods recently developed when the outlier-to-inlier ratio in a data set is high.
  • Keywords
    computational geometry; computer vision; optimisation; parameter estimation; set theory; L-norm optimisation framework; MaxFS; geometric computer vision problems; model parameter estimation; outlier removal; outlier-to-inlier ratio; quasi-maximum feasible subset; quasi-maximum feasible subsystem; robust fitting algorithm;
  • fLanguage
    English
  • Journal_Title
    Electronics Letters
  • Publisher
    iet
  • ISSN
    0013-5194
  • Type

    jour

  • DOI
    10.1049/el.2015.0842
  • Filename
    7150441