DocumentCode :
4146
Title :
Quasi-maximum feasible subsystem for geometric computer vision problems
Author :
Chanki Yu ; Da Young Ju ; Sang Wook Lee
Author_Institution :
Dept. of Media Technol., Sogang Univ., Seoul, South Korea
Volume :
51
Issue :
14
fYear :
2015
fDate :
7 9 2015
Firstpage :
1071
Lastpage :
1073
Abstract :
A robust fitting algorithm for geometric computer vision problems under the L-norm optimisation framework is presented. It is essentially based on the maximum feasible subsystem (MaxFS) but it overcomes the computational limitation of the MaxFS for large data by finding only a quasi-maximum feasible subset. Experimental results demonstrate that the algorithm removes outliers more effectively than the other parameter estimation methods recently developed when the outlier-to-inlier ratio in a data set is high.
Keywords :
computational geometry; computer vision; optimisation; parameter estimation; set theory; L-norm optimisation framework; MaxFS; geometric computer vision problems; model parameter estimation; outlier removal; outlier-to-inlier ratio; quasi-maximum feasible subset; quasi-maximum feasible subsystem; robust fitting algorithm;
fLanguage :
English
Journal_Title :
Electronics Letters
Publisher :
iet
ISSN :
0013-5194
Type :
jour
DOI :
10.1049/el.2015.0842
Filename :
7150441
Link To Document :
بازگشت