Title :
Applications of probability model to analyze the effects of electric vehicle chargers on distribution transformers
Author :
Sexauer, J.M. ; McBee, Kerry D. ; Bloch, Kelly A.
Author_Institution :
Colorado Sch. of Mines, Golden, CO, USA
Abstract :
Society´s increased concern over green house gas emission and the reduced cost of electric vehicle technologies has increased the number of electric vehicles (EV) and plug-in hybrid vehicles on the road. Previous studies into the effects of electric vehicles on the electric system have focused on transmission, generation, and the loss of life of distribution transformers. This paper focuses specifically on identifying distribution transformers that are most susceptible to excessive loading due to the implementation of electric vehicles. The authors use a binomial probability model to calculate the probability that a specific distribution transformer will experience excessive loading. Variables to the function include the existing peak transformer demand, number of customers connected to the transformer, and the most common EV charger demand. Also included in the paper is an optimization approach that utilizes the results from the binomial function to determine the optimal replacement strategy to minimize replacement costs. An extension of the approach is also utilized to explore the effectiveness of EV targeted demand side management programs. The authors apply the described algorithms to 75 000 distributions transformers within a distribution system located in Denver, Colorado, USA.
Keywords :
air pollution; battery powered vehicles; binomial distribution; cost reduction; demand side management; hybrid electric vehicles; power distribution economics; power distribution reliability; power transformers; Colorado; Denver; EV charger demand; EV targeted demand side management programs; USA; binomial function; binomial probability model; cost reduction; distribution transformer life loss; electric vehicle chargers; electric vehicle technology; generation; greenhouse gas emission; optimal replacement strategy; optimization approach; peak transformer demand; plug-in hybrid vehicles; probability model; replacement cost minimization; transmission; Battery powered vehicles; Electric vehicles; Forecasting; Load modeling; Loading; Power transformers; Binomial distribution; demand side management; distribution planning; distribution transformers; electric vehicles;
Journal_Title :
Power Systems, IEEE Transactions on
DOI :
10.1109/TPWRS.2012.2210287