DocumentCode :
416968
Title :
Robust on-line signature verification by new segmentation method and fusion model
Author :
Ryu, Sang-Yeun ; Lee, Dae-Jong ; Lee, Seok-Jong ; Chun, Myung-Geun
Author_Institution :
Sch. of Electr. & Electron. Eng., Chungbuk Nat. Univ., South Korea
Volume :
2
fYear :
2003
fDate :
4-6 Aug. 2003
Firstpage :
1590
Abstract :
This paper proposes a robust on-line signature verification by a new segmentation method and fusion model. The segmentation method solves the problem that the variation between reference signature and input signature causes an error in the location or the number of segments. In addition, the fusion model discriminates genuineness by calculating each feature vector´s fuzzy membership degree yielded by the proposed segment method. Experimental results show lower FRR(False Reject Rate) for genuine signature when FAR(False Accept Rate) is fixed than the dynamic programming(DP) method.
Keywords :
dynamic programming; feature extraction; handwriting recognition; image segmentation; pattern matching; dynamic programming; false accept rate; false reject rate; feature vectors fuzzy membership degree; fusion model; input signature; new segmentation method; online signature verification; pattern matching; reference signature;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
SICE 2003 Annual Conference
Conference_Location :
Fukui, Japan
Print_ISBN :
0-7803-8352-4
Type :
conf
Filename :
1324211
Link To Document :
بازگشت